

No rose without a thorn: Adapting sensory methods for testing garden roses

Amy Bowen & Alexandra Grygorczyk

Vineland Research and Innovation Centre

- Independent, not-for-profit research institute in Niagara region of Canada
- Dedicated to driving a competitive horticulture industry through research, advancements in technologies and commercialization of new products
- Fruits, vegetables and ornamental plants

49th Parallel Collection

Canada's Hardy Rose Program

- Vineland breeding cold-hardy, disease resistant roses with consumer appeal
- Need to understand drivers of liking to inform breeding selections and rose releases

www.49throses.com

Rose challenges

- Highly diverse product set
- Highly variable products
- Temporal
 - Being in peak bloom is important for consumer acceptance
 - Different roses achieve peak bloom at different times
- Sensitive to environmental conditions, grown in a variable environment

Rose maintenance

- Commercial roses from one grower
- All roses in same style pots
- Kept in same growing conditions for 2 months prior to testing
- Grew 5 roses of each variety, brought 3 best ones for testing

Research Questions

1) Hedonic testing

• What is the best method of in-person hedonic testing considering that roses will reach peak bloom at different times?

2) Preference Mapping

• Can the same approaches used to build a preference map in food products, be directly applied to roses?

Consumer study design

Both years

- Garden plant purchasers
- Consumers from Greater Toronto Area
- 12 roses evaluated
 - 2 roses replicated between years

Year 1

- 199 participants
- 1 testing day per week for 3 weeks
 - Account for roses blooming at different times
- Liking scored on a 100pt scale
- Year 2
- 197 participant
- 3 consecutive testing days in one week
 - Account for roses at one time point that are in bloom
- Liking scored on 100pt scale and CATA for liking and disliking

Presentation order

- Roses stayed in one place, participants moved between booths visiting roses
- Participants received an "itinerary", order of booths
- Itinerary: 12x 12
 Sudoku puzzle
 - Each line of Sudoku puzzle was one participant's itinerary

Booth set-up

- 12 booths: 1 rose variety per booth
- 3 pots of the same rose
- Photo tag with flower close-up
- 3-digit code
- Roses behind "doors" in booth
- Computers in adjacent booth

Best methods

2) What is the best method of in-person hedonic testing considering that roses will reach peak bloom at different times?

Year 1: Liking results

Significant differences in liking from week to week depending on bloom

Comparison between years

Year 1 vs. Year 2

Look at average liking across 3 weeks or best week only?

Rose	Liking
Yellow Rose 1-Year 2	80.3 ^a
Yellow Rose 1-Year 1 Best Week	75.5 ^{ab}
Red Rose 1-Year 2	71.4 ^b
Red Rose 1-Year 1 Best Week	70.9 ^{bc}
Yellow Rose 1-Year 1 Overall	68.5 ^{bc}
Red Rose 1-Year 1 Overall	66.1 ^c

Best week comparison

Year 1 vs. Year 2

Comparison between years

 Year 2 and best week of year 1 not significantly different

Rose	Liking
Yellow Rose 1-Year 2	80.3 ^a
Yellow Rose 1-Year 1 Best Week	75.5 ^{ab}
Red Rose 1-Year 2	71.4 ^b
Red Rose 1-Year 1 Best Week	70.9 ^{bc}
Yellow Rose 1-Year 1 Overall	68.5 ^{bc}
Red Rose 1-Year 1 Overall	66.1 ^c

Overall comparison

Results: Year 1 vs. Year 2

Comparison between years

- Year 2 and best week of year 1 not significantly different
- Year 2 significantly different from overall year 1 result

Rose	Liking
Yellow Rose 1-Year 2	80.3 ^a
Yellow Rose 1-Year 1 Best Week	75.5 ^{ab}
Red Rose 1-Year 2	71.4 ^b
Red Rose 1-Year 1 Best Week	70.9 ^{bc}
Yellow Rose 1-Year 1 Overall	68.5 ^{bc}
Red Rose 1-Year 1 Overall	66.1°

Summary

Year 1

3 days of testing 1 day/week

Pro

- Each rose has opportunity to be seen when in bloom
- No need to keep large rose inventory
 Con
- Logistics more complicated: Need to setup/tear down 3 times
- Can only use data from best week for each rose

Year 2

3 consecutive days of testing

Pro

- Testing logistics are simpler: Consecutive testing days
- Ability to use all consumer data

Con

- Need to maintain a large pool of roses until testing is complete
- Risk that roses of interest may not be in full bloom during testing

Preference Mapping

• 3) Can the same approaches used to build a preference map in food products be directly applied to roses?

The plan

- Create an external preference map for landscape roses
 - Predict liking of new varieties coming out of breeding program
 - Benchmark against competitors
 - Product positioning
- Successful in edible crops
 - Sweet potatoes
 - Apples
 - Tomatoes

The lexicon

12 training sessions 95 terms generated 32 terms into four categories 25 terms defined **Evaluation** protocols defined

whole plant and foliage

plant height (short – tall) upright growth habit (spreading – upright) density of plant (low – high) flower coverage (low – high) new growth – bud (few – many) new growth – young shoots (few – many) bud elongation (round – elongated) thorn length (short – long) thorn coverage (low – high) leaf size (small – large) colour of foliage – lightness (dark – light) leaf shine (dull – shiny)

flower

flower size (small – large) abundance of petals (few – many) height of flower (flat – tall) petal curling (low – reflexed) petal edge scalloping (round – scalloped)

Visit poster 62 for the full story

main flower colour

hue (violet – yellow; red (midpoint)) lightness (dark – light) saturation (dull – bright/vivid) is there a secondary colour? (Y/N) yes→ contrast of secondary colour yes→ blending of secondary colour no→ monotone evenness is the centre visible? (Y/N) yes→ size of the centre yes→ contrast of the centre

aroma

overall aroma (low – high) rose water (low – high) grassy/vegetal(low – high) lemony (low – high) red berry (low – high) spice (low – high) hay (low – high)

Sensory lexicon represented attributes deemed important by commercial rose growers (experts)

Descriptive analysis

- 14 sessions, 12 trained panellist
- Lexicon of 32 attributes
- 53 rose cultivars (12 selected for hedonics)
- Panelist circulated room in randomized order
 - Whole plant, flower shape, colour
 - 3 rose plants/booth
 - Labelled 3 digit codes
- Aroma evaluated by smelling cut flowers in cup under red light

Sensory profile

Group 1

- Abundance of petals
- High foliage density
- Yellow hues
- High lightness

Group 2

- Purple hues, white blends
- Upright growth
- Monotone colour
- Overall aroma
- High saturation

Group 3

- High colour contrast
- Secondary colour

Consumer liking

Year 2 consumer study

- Roses were found to differ for liking
- Could not predict consumer preference from through external preference mapping
 - Not significant (p= 0.245)
- Did see an impact of bloom coverage on liking
- CATA to define likely

Roses	Mean liking	
Yellow rose	80.3 a	
Pink rose 1	71.7 b	
Red rose	71.4 b	
Pink rose 2	69.2 b	
Coral rose	68.4 bc	
Violet rose	61.7 cd	
While rose 1	58.2 de	
White rose 2	51.6 ef	
Pink rose 3	51.3 ef	
Pink rose 4	48.9 f	and a
Pink rose 5	48.8 f	A THE
White rose 3	48.0 f	

Drivers of liking

Consumers were more decisive about what they did not like. What they dislike about a rose can overpower its positive attributes.

Challenges: Why didn't it work?

Preference mapping

- Did not find any sensory attributes from profiling that correspond to liking
 - Flower coverage and colour were important for consumer liking but did not contribute to the sensory space (low KMO in PCA)
- Flavour over-rules expertise?
 - Edible: Experts and consumers can agree on attributes they experience inmouth such as taste, aromas, textures to describe a product
 - Non-edible: Experts and consumers may have different frame of reference
 - Consumer is evaluating amount of flower coverage and colour
 - Expert is evaluating petal number, plant architecture and foliage
- Lexicon audience
 - There is a discrepancy between how consumer and trained panel evaluated the rose plants
 - Need to define who is driving the lexicon development: consumer or expert
 - Visit Poster 62 for more challenges related to lexicon development

Key takeaways

- The best method for hedonic testing of highly variable, temporal products depends on project objectives & budget
 - Overall testing highly variable temporal products remains a challenge.
- 2. While many approaches are similar in food & nonfood, preference mapping of roses had some additional challenges
 - Need to ensure the lexicon describes the product from a consumer perspective to predict liking
 - Consumers more descriptive at defining what they do not like
 - Roses need to be evaluated a peak bloom time

Acknowledgments

- Funding through the Growing Forward 2: Agricultural Adaptation Council
- Partnership with Canadian Nursery Landscape Association

Consumer Insights Team

- Amy Blake
- Amy Jenkins
- Jessica Turecek
- David Ly
- Chantal Cole
- Rachel Gerroir

Thank you

Amy Bowen Research Director, Consumer Insights amy.bowen@vinelandresearch.com

Alexandra Grygorczyk Research Scientis, Consumer Insights alexandra.grygorczyk@vinelandresearch.com

vinelandresearch.com

VinelandResearch

RESEARCH & INNOVATION CENTRE