Characterization of Oral Tactile Sensitivity and Masticatory Performance Across Adulthood

Grace Shupe, Zoe Resmondo, & Curtis R. Luckett

Individual Variation in Texture Perception

- Inherent differences in human perception represent a major aspect of the variation in product judgements.
- The sources of the individual differences also shed light on the factors governing texture perception.

Oral Processing

Masticatory Feedback Loop

- Chewing is driven by rhythmic contractions of muscles generated by central patterns in the brainstem.
- Tactile feedback is used to modify masticatory motor movements

Tactile feed back is used to:

- Determine jaw placement and avoid discomfort while chewing due to an unintended collision of teeth
- Locate and assess in the oral cavity food particles
- Optimize chewing patterns to breakdown foodstuffs

Oral Tactile Sensitivity

- Essick's Oral Lingual Stereognosis
- Semmes-Weinstein Monofilament
- Granulation Discrimination
- Two-point Discrimination
- Roughness Threshold
- Pressure Sensitivity
- Etc.

It isn't known which measures of sensitivity focus on how texture is perceived then **relayed back into the masticatory feedback loop**.

What measure of oral tactile sensitivity are important for chewing?

Participants

- N=98, 57% Female
- Screened by Age Group
 - 20-25
 - 35-45
 - >62

• Self-Report common dental procedures

		Age Group			
Demographics		Young	Middle	Old	
	N	34	31	28	
Age	Mean	22.5 ± 1.6	40 ± 3.1	73 ± 6.1	
	Max	25	45	87	
	Min	20	35	63	
Gender	Female	22	18	16	
	Male	12	13	12	

* Mean values have SD as the error term.

Oral Sensitivity

Mastication Performance

Oral Stereognosis + Bite Force Sensitivity + Lingual Tactile Acuity = Total Index

- Mixing Ability
 - Two-color gum sample
 - 10 Seconds

Mastication Performance

	Age	Dental status	Masticatory performance	Stereognosis	Lingual sensitivity	Bite force sensitivity
Age	-	-0.5859**	-0.1037	-0.3978**	-0.3881**	-0.0593
Dental status		-	0.1193	0.2364*	0.2244*	0.0485
Masticatory performance			-	0.0429	0.0657	0.0771
Stereognosis				-	0.4648**	0.0027
Lingual sensitivity					-	0.0030
Bite force sensitivity						-

*Significant at the 0.05 level. **Significant at the 0.0001 level.

Pearson's Correlations

Conclusions

- Individual differences were found for all sensitivity tests and masticatory performance
- Changes in oral sensitivity did not relate to masticatory performance
- Age was a significant factor in some measures of oral sensitivity
 - Aging effect is heterogenous declines in some but not all

How does oral sensitivity relate to mastication and sensitivity to texture changes?

Participants

Discrimination Ability

- Triangle Testing
- Four different gelatin hardness's:

Oral Processing

• Jaw tracking utilized to determine masticatory behavior.

Discriminatory Ability

More common in individuals with low sensitivity (p < 0.05)

 High sensitivity participants were much more likely to have chews not fitting a pattern (p < 0.05)

• More dynamic mastication patterns are evidence of greater tactile feedback

• Using tactile information to modify mastication pattern

Effect of Oral Tactile Sensitivity on Mastication Parameters

Overall Conclusions

• Oral sensitivity scores modulated with age.

• Texture discrimination <u>not</u> influenced by oral sensitivity

• Mastication performance was <u>not</u> affected by sensitivity.

• Oral tactile sensitivity influences chewing behavior

References

- Bangcuyo, R. G., & Simons, C. T. (2017). Lingual tactile sensitivity: effect of age group, sex, and fungiform papillae density. *Experimental Brain Research*, 235(9), 2679-2688.
- Essick, G. K., Chen, C. C., & Kelly, D. G. (1999). A letter-recognition task to assess lingual tactile acuity. *Journal of Oral and Maxillofacial Surgery*, 57(11), 1324-1330. doi:10.1016/S0278-2391(99)90871-6
- Jacobs, R., Serhal, C. B., & Steenberghe, D. v. (1998). Oral stereognosis: a review of the literature. *Clinical Oral Investigations*, 2(1), 3-10.
- Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors. *Current Opinion in Neurobiology*, 11(4), 455-461. doi:<u>http://dx.doi.org/10.1016/S0959-4388(00)00234-8</u>
- Linne, B. S., Christopher T. (2017). Quantification of Oral Roughness Perception and Comparison with Mechanism of Astingency Perception. *Chemical Senses*, 42, 525-535. doi:10.1093/chemse/bjx029
- Luckett, C. R., Meullenet, J.-F., & Seo, H.-S. (2016). Crispness level of potato chips affects temporal dynamics of flavor perception and mastication patterns in adults of different age groups. *Food Quality and Preference, 51*, 8-19. doi:10.1016/j.foodqual.2016.02.013
- Pigg, M., Baad-Hansen, L., Svensson, P., Drangsholt, M., & List, T. (2010). Reliability of intraoral quantitative sensory testing (QST). Pain, 148(2), 220-226. doi:10.1016/j.pain.2009.10.024
- Ringel, R. L., & Ewanowski, S. J. (1965). Oral Perception: 1. Two-Point Discrimination. *Journal of Speech, Language, and Hearing Research, 8*(4), 389-398. doi:10.1044/jshr.0804.389
- Schimmel, M., Christou, P., Herrmann, F., & Muller, F. (2007). A two-colour chewing gum test for masticatory efficiency: development of different assessment methods. *J Oral Rehabil*, *34*(9), 671-678. doi:10.1111/j.1365-2842.2007.01773.x
- Schimmel, M., Voegeli, G., Duvernay, E., Leemann, B., & Müller, F. (2017). Oral tactile sensitivity and masticatory performance are impaired in stroke patients. *Journal of Oral Rehabilitation*, 44(3), 163-171.
- Szczesniak, A. S. (2002). Texture is a sensory property. *Food Quality and Preference, 13*(4), 215-225.
- Wilson, A., Luck, P., Woods, C., Foegeding, E. A., & Morgenstern, M. (2016). Comparison of jaw tracking by single video camera with 3D electromagnetic system. *Journal of Food Engineering*, *190*, 22-33. doi:<u>http://dx.doi.org/10.1016/j.jfoodeng.2016.06.008</u>
- Yokoyama, S., Hori, K., Tamine, K.-i., Fujiwara, S., Inoue, M., Maeda, Y., . . . Ono, T. (2014). Tongue Pressure Modulation for Initial Gel Consistency in a Different Oral Strategy. *PLOS ONE*, *9*(3), e91920. doi:10.1371/journal.pone.0091920

Acknowledgements

- Zoe Resmondo
- Sara Burns
- Michelle Heatherly
- Robert Pellegrino
- Arran Wilson

sensory.tennessee.edu

Discover. Innovate. Grow.™